Concept information
Terme préférentiel
convex function
Définition
-
In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Convex_function)
Concept générique
Concepts spécifiques
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-VKBMPHVL-W
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}