Concept information
Terme préférentiel
flat manifold
Définition
-
In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Flat_manifold)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-VPCNXCWL-0
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}