Passer au contenu principal

Mathematics (thesaurus)

Choisissez le vocabulaire dans lequel chercher

Concept information

set theory > axiom of regularity

Terme préférentiel

axiom of regularity  

Définition

  • In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads:


    The axiom of regularity together with the axiom of pairing implies that no set is an element of itself, and that there is no infinite sequence (an) such that ai+1 is an element of ai for all i. With the axiom of dependent choice (which is a weakened form of the axiom of choice), this result can be reversed: if there are no such infinite sequences, then the axiom of regularity is true. Hence, in this context the axiom of regularity is equivalent to the sentence that there are no downward infinite membership chains.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Axiom_of_regularity)

Concept générique

Synonyme(s)

  • axiom of foundation

Traductions

URI

http://data.loterre.fr/ark:/67375/PSR-VWLLSCW9-R

Télécharger ce concept :