Concept information
Terme préférentiel
Bateman-Horn conjecture
Définition
-
In number theory, the Bateman–Horn conjecture is a statement concerning the frequency of prime numbers among the values of a system of polynomials, named after mathematicians Paul T. Bateman and Roger A. Horn who proposed it in 1962. It provides a vast generalization of such conjectures as the Hardy and Littlewood conjecture on the density of twin primes or their conjecture on primes of the form n2 + 1; it is also a strengthening of Schinzel's hypothesis H.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Bateman%E2%80%93Horn_conjecture)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-WGCW2KGP-4
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}