Concept information
Terme préférentiel
hypothèse de Riemann généralisée
Définition
-
L'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann. Aucune de ces conjectures n'a été confirmée ou infirmée par une démonstration, mais beaucoup de mathématiciens croient qu'elles sont vraies. Les fonctions L globales peuvent être associées aux courbes elliptiques, aux corps de nombres (dans ce cas, elles sont appelées fonctions zêta de Dedekind), aux ondes de Maass, et aux caractères de Dirichlet (dans ce cas, elles sont appelées fonctions L de Dirichlet). Lorsque l'hypothèse de Riemann est formulée pour les fonctions zêta de Dedekind, elle est connue sous le nom d'hypothèse de Riemann étendue (HRE) et lorsqu'elle est formulée pour les fonctions L de Dirichlet, elle est connue sous le nom d'hypothèse de Riemann généralisée (HRG).
(Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Hypoth%C3%A8se_de_Riemann_g%C3%A9n%C3%A9ralis%C3%A9e)
Concept générique
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/PSR-XMT7T41H-T
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}