Concept information
Terme préférentiel
Gauss's lemma
Définition
-
In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space at p to M:
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Gauss%27s_lemma_(Riemannian_geometry))
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-ZMXS7MB5-V
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}