Concept information
Terme préférentiel
Killing vector field
Définition
-
In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Killing_vector_field)
Concept générique
Synonyme(s)
- Killing field
Traductions
-
français
-
champ de Killing
URI
http://data.loterre.fr/ark:/67375/PSR-ZND9L86D-W
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}