Concept information
Terme préférentiel
Menelaus's theorem
Définition
-
Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle △ABC, and a transversal line that crosses BC, AC, and AB at points D, E, and F respectively, with D, E, and F distinct from A, B, and C. A weak version of the theorem states that
where "| |" denotes absolute value (i.e., all segment lengths are positive).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Menelaus%27s_theorem)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-ZRLNBDB6-Z
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}